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2 Dipartimento di Fisica, Università di Parma, and INFN, Gruppo Collegato di Parma,
43100 Parma, Italy

E-mail: fateev@lpm.univ-montp2.fr, depietri@fis.unipr.it and onofri@unipr.it

Received 13 July 2004
Published 10 November 2004
Online at stacks.iop.org/JPhysA/37/11379
doi:10.1088/0305-4470/37/47/007

Abstract
A class of singular integral operators, encompassing two physically relevant
cases arising in perturbative QCD and in classical fluid dynamics, is presented
and analysed. It is shown that three special values of the parameters allow for
an exact eigenfunction expansion; these can be associated with Riemannian
symmetric spaces of rank 1 with positive, negative or vanishing curvature. For
all other cases an accurate semiclassical approximation is derived, based on the
identification of the operators with a peculiar Schroedinger-like operator.

PACS numbers: 02.30.−f, 02.30.Rz, 13.87.−a, 11.10.Hi, 47.15.−x, 47.11.+j

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It has recently been realized that a special kind of singular integral equation arising in the
study of jet production (e+e− → qq̄ + anything) [1, 2] bears a striking similarity to another
equation4 introduced 40 years ago by Tuck [3] in the context of laminar flows around slender
bodies. In this paper we describe a general two-parameter family of integral operators which
reduce to Tuck’s and Marchesini–Mueller’s (hereafter MM) case for special values of the

3 On leave from Landau Institute for Theoretical Physics, ul.Kosygina 2, 117940 Moscow, Russia.
4 We are indebted to R A Askey for pointing out to us the reference to Tuck’s paper.
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parameters:

(Kαβ φ)(x) ≡
∫ 1

−1

φ(x) − φ(y)

|x − y| dy + ((1 − α) log(1 + x) + (1 − β) log(1 − x))φ(x).

We shall show that the spectral problem can be solved exactly in three cases, connected to
the three distinct symmetric spaces of rank 1 (with curvature 1, 0, −1) and they correspond
to (α, β) = (1, 1), (0, 0), (0, 1), respectively. The first case [3] has discrete spectrum and it
is (unitarily equivalent to) a function of the Laplacian on the sphere restricted to the axially
symmetric sector. The second case has continuous spectrum and it is (unitarily equivalent to) a
function of the Laplacian on the real line. The third case is equivalent to Marchesini–Mueller’s
operator and it is (unitarily equivalent to) a function of the radial Laplacian on the hyperbolic
plane. Tuck’s case corresponds to T ≡ 1

2K22 and no exact solution is presently known. To
it we can nonetheless apply a semiclassical approximation (WKB) which will be derived in
general for any positive value of the parameters; the spectrum is purely discrete in this case
and it is approximated by

κ(α,β)
n ≈ 2

[
log

(
π

(
n +

1

2

))
− log

(
�(α/2)�(β/2)

�((α + β)/2)

)
+

(
1 − 1

2
(α + β)

)
log 2 + γE

]
(1)

(γE is Euler’s constant), which in particular gives Tuck’s eigenvalues to a very good accuracy
(see table 1).

This paper is organized as follows. In section 2 we introduce the special problem related
to jet physics and show that it is unitarily equivalent to K0 1. In section 3 we identify a second-
order differential operator L commuting with K0 1 and determine its eigenfunction expansion.
Moreover, a first-order differential operator � is shown to commute with the operator K0 0,
and also in this case we can obtain the spectral representation which is used in section 4
to introduce another representation of the operators, equivalent to Schroedinger’s equation
with a kinetic energy given by g(p), where p is the momentum operator −i d/du and g is
essentially Lipatov’s function. In this representation it is easy to derive qualitative properties
of the operator K and to set up the semiclassical approximation. We also derive the boundary
behaviour of eigenfunctions in the general case. In appendix A we show that the operator L
commuting with K0 1 is indeed equivalent to the Laplace operator on the hyperbolic plane,
a fact which gives us valuable information on the eigenfunction expansion (completeness,
spectral measure). In appendix B we give an easy proof of Tuck’s result about K1 1 which is
essential to the developments of section 3.

2. Marchesini–Mueller’s equation

Marchesini and Mueller [1] introduced an equation for the multiplicity of quark–antiquark
pairs in electron–positron collisions. As a function of energy, the multiplicity density satisfies
an evolution equation given by

∂u(τ, ξ)

∂τ
=

∫ 1

0

dη

1 − η

[
u(τ, ηξ)

η
− u(τ, ξ)

]
+

∫ 1

ξ

dη

1 − η
[u(τ, ξ/η) − u(τ, ξ)]

where τ is the logarithm of the energy in the center of mass and ξ = 1
2 (1 − cos θ), with

θ the angle between the two jets emerging from the electron–positron collision. Knowing
the multiplicity at low energy, its energy dependence can be calculated at all higher energies
by QCD perturbation theory and the result, in a special regime, gives the integral equation
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above. For details see [1]. It is formally very similar to the so-called BFKL equation [4]. The
unknown u(τ, ξ) is defined for ξ ∈ (0, 1), and it vanishes at ξ = 0 to ensure convergence.
The initial value problem is solved if we can find the spectral decomposition of the operator
on the rhs.

It is a matter of simple algebra to show that actually the equation can be recast into the
form

∂φ

∂τ
= −K0 1φ

by performing the following transformation:

u(τ, ξ) = e− log 2τ ξφ(τ, 2ξ − 1).

The operators K1 1 and K0 1 play a central role in the following. Hence we introduce a
special notation for them:

H ≡ 1
2K1 1

M ≡ K0 1 − log 2 = 2H + log 1
2 (1 + x).

It is known [3] that H is diagonal in the basis of Legendre polynomials and its discrete
eigenvalues are given by the harmonic numbers

HPn = hnPn, hn =
{

0 for n = 0∑n
j=1

1
j

for n > 0

(a simple proof of this result can be found in appendix B). One could study the general spectral
problem for (α, β) close to (1, 1), e.g. by perturbation theory. However, for arbitrary values of
the parameters a different approach is needed. It has been shown in [2] that the operator M has
actually a continuous spectrum, and the eigenfunctions can be identified with hypergeometric
functions. The result is obtained by an expansion starting from a combination of phase-shifted
plane waves. The expansion can be pushed to all orders, and the resulting series is convergent
to a hypergeometric function which can be identified with Legendre functions. The spectral
decomposition of M is reduced to the classical Mehler–Fock transform. We shall come back
to these facts in the appendix. Here we want to show how this exact result can be derived
without any approximate procedure, by looking for a local (differential) operator commuting
with M. This will give an alternate more rigorous proof of the solution.

3. Commutativity with differential operators and exact solution

3.1. The MM operator

The easiest way to solve MM equation is to find a differential operator L that commutes
with M:

[L,M] = [L, 2H] + [L, log(1 + x)] = 0.

It is convenient to look for the operator L such that L as well as [L, log(1 +x)] acts in a simple
way on Pn(x); taking into account the known properties of Legendre polynomials

L0Pn ≡ [
(1 − x2)∂2

x − 2x∂x

]
Pn(x) = −n(n + 1)Pn(x)

xPn = n + 1

2n + 1
Pn+1 +

n

2n + 1
Pn−1

−(1 − x2)∂xPn = n(n + 1)

2n + 1
(Pn+1 − Pn−1),
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the problem will reduce to a purely algebraic one. Since the MM equation has a singularity at
x = −1 we will search L in the form

L = (1 + x)L0 + a(1 − x2)∂x + b(1 + x).

By construction, this operator acts in a simple way on Pn(x). Namely,

LPn(x) = AnPn+1 + BnPn + Cn−1Pn−1

where5 {
(2n + 1)An = −n(n + 1)2 − an(n + 1) + b(n + 1)

(2n + 1)Cn−1 = −n2(n + 1) + an(n + 1) + bn
(2)

(and Bn does not enter in what follows). The action of the commutator [L,H] on Pn is then
given by

[L,H]Pn = hnLPn − HLPn = 1

n
Cn−1Pn−1 − 1

n + 1
AnPn+1. (3)

The commutator C ≡ [L, log(1 + x)] can also be easily calculated:

C = 2(1 − x2)∂x − 2x + (a − 1)(1 − x). (4)

Note that there are no diagonal terms coming from equation (3), hence the only diagonal
contribution to the commutator comes from the last term in C, which immediately implies
a = 1. Using the properties of Pn, we can write

CPn = RnPn+1 + Sn−1Pn−1

with

Rn = −2
(n + 1)2

2n + 1
, Sn−1 = 2

n2

2n + 1
.

Now we can check the commutativity of L and M:

2

n + 1
An + Rn = 0; 2

n
Cn−1 + Sn−1 = 0.

From the first equation we have

An = −n + 1

2
Rn = − (n + 1)3

2n + 1
; (5)

on the other hand we have from equation (2)

An = − (n + 1)(n2 + 2n − b)

2n + 1
which fixes b = −1. The equation for Cn−1 is automatically satisfied. Note that for Kα 1 with
α > 0 one would find a coefficient different from the one in front of An in equation (5), hence
no solution. M is therefore the only operator in the family Kαβ which allows a commuting
differential operator of the form L. The other two cases, alluded to in the introduction, are
connected to a different choice of L and will be discussed later.

Now we can find the eigenfunctions for the MM equation. They satisfy the differential
equation

Lφ = λφ.

5 Our convention for the indices is the natural one if we think of the rhs as the action on the left by a tridiagonal
matrix with vectors [C,B, A] along the diagonal.
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We should look for the solutions satisfying |φ(x)| → |1 + x|−1/2 at x → −1 and which are
finite at x → 1. It is convenient to parametrize λ = −1/2 − 2k2. Then the equation for φ can
be written as [

(1 − x2)∂2
x + (1 − 3x)∂x − 1 +

1 + 4k2

2(1 + x)

]
φ = 0.

With the substitution

φ = (1 + x)αψ(x); α = −1/2 + ik

we get [
(1 − x2)∂2

x + {2α + 1 − (3 + 2α)x}∂x − (α + 1)2
]
ψ(x) = 0.

Setting x = 1 − 2y, we obtain[
y(1 − y)∂2

y + {1 − (3 + 2α)y}∂y − (α + 1)2
]
ψ(y) = 0

which is a hypergeometric equation with a = b = α + 1 = 1/2 + ik and c = 1. The solution
which is finite at y = 0 (x = 1) and y = 1 (x = −1) has the form

ψ(y) = F

(
1

2
+ ik,

1

2
+ ik, 1, y

)
;

φ(k, x) = (1 + x)−1/2+ikF

(
1

2
+ ik,

1

2
+ ik, 1,

1 − x

2

)
.

If we re-introduce the variable ξ = (1 + x)/2 the result can be written in the form

φ(k, ξ) = Cξ−1/2+ikF
(

1
2 + ik, 1

2 + ik, 1, 1 − ξ
)
. (6)

To calculate the eigenvalue κ of MM as a function of k (the dispersion relation) we may use
the fact that H annihilates the constant and is symmetric. It follows

κ(k)

∫
φ(k, ξ) dξ =

∫
log ξφ(k, ξ) dξ. (7)

This integral can be calculated and is given by a combination of digamma functions known as
Lipatov’s function [4]

κ(k) = ψ
(

1
2 + ik

)
+ ψ

(
1
2 − ik

) − 2ψ(1)

= −4 log 2 + 14ζ(3)k2 − 62ζ(5)k4 + O(k6) (8)

(ψ(z) = d log �(z)/dz). The evolution equation for the MM equation can now be solved by
expanding u(τ, ξ) on the continuous basis ξφ(k, ξ). The spectral measure which defines the
eigenfunction expansion can be taken by [5] (see also appendix).

3.2. The case α = β = 0

We note that another operator, namely 2H + log(1 − x2) = K0 0, also commutes with a
differential operator. In this case it is easy to prove that it commutes with a first-order
differential operator6

� = i[−(1 − x2)∂x + x] = −i
√

1 − x2 ∂x

√
1 − x2. (9)

The eigenfunctions in this case have a simple form

�φ(k, x) = kφ(k, x)

φ(k, x) = (1 + x)(ik−1)/2(1 − x)−(ik+1)/2.
(10)

6 It will be noted that this operator is a multiple of the commutator C of equation (4).
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The eigenvalue g(k) of K0 0 = 2H + log(1 − x2) belonging to these eigenfunctions can be
calculated exactly in the same way as before (see equation (7)) and it has the form

g(k) = ψ
(

1
2 (1 + ik)

)
+ ψ

(
1
2 (1 − ik)

) − 2ψ(1) + 2 log 2

(which again can be reduced to Lipatov’s function). This means that K0 0 coincides with a
function of the first-order differential operator, namely

2H + log(1 − x2) = g(�). (11)

In the following section we will use this representation to derive a semiclassical approximation
and for the analysis of the asymptotic behaviour of the solutions φ(x) near the boundary points
x = ±1.

4. The Schroedinger representation and semiclassical analysis

4.1. The semiclassical spectrum

We can use the representation (11) for the operator 2H+ log(1 − x2) in terms of the first-order
differential operator to transform our integral equation in the form of a Schroedinger equation
(with unusual kinetic term) which is convenient for the semiclassical analysis. Consider the
equation

Kαβφ = {2H + [(1 − α) log(1 + x) + (1 − β) log(1 − x)]}φ = κφ. (12)

This equation can be rewritten in terms of Schroedinger equation. Namely if we do the
substitutions x = tanh u and φ = cosh(u)�(u) the last equation can be rewritten as

g(−i∂u)�(u) − [α log(1 + tanh u) + β log(1 − tanh u)]� = κ�. (13)

In the free case α = β = 0 we have the plane waves solutions corresponding to the functions
(10) after this substitution. In the case α = β = 1 we have �1 1 = Pn(tanh u)/ cosh u; this
means that by identifying tanh u ≡ cos ϑ , and modulo a similarity transformation, this case is
related to the Laplace operator on the two-dimensional sphere. Finally, the case α = 0, β = 1
corresponds to the MM equation, where also the exact solution is known.

It is convenient to slightly modify the function g(z) and the eigenvalue κ by adding a
constant shift. Let us introduce G(z) and κ ′ by

G(z) = g(z) + 2ψ(1); κ ′ = κ + 2ψ(1) (14)

where ψ(1) = −γE. Then equation (13) can be rewritten as

(G(p) + V (u))�(u) = κ ′�(u) (15)

where p = −i∂u and V = −α log(1 + tanh u) − β log(1 − tanh u).

We shall need the following asymptotic behaviour of G(p):

G(p) =
{

G(0) + 7/2ζ(3)p2 + O(p4), (p ∼ 0)

log p2 + O(1/p2), (p → ∞).
(16)

The operator G(p) takes on the role of the kinetic energy and is equivalent to the usual operator
of non-relativistic quantum mechanics in the low energy limit. It follows that the operator
G(p) + V (u) has a discrete spectrum for β � α > 0 (by symmetry we can restrict to the
sector β � α with no loss of generality), while it has continuum spectrum for β � α = 0. Let
us note that in this picture Tuck’s operator T (α = β = 2) is qualitatively very similar to the
‘trivial’ case (α = β = 1) which corresponds to operator H.
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Table 1. The WKB spectrum of T and H.

n Reference [6] WKB hn WKB

0 0.2332 0.3357 0 −0.116
1 1.4437 1.4343 1 0.9827
2 1.9409 1.9451 1.5 1.4935
3 2.2833 2.2816 1.8333 1.8300
4 2.5317 2.5329 2.0833 2.0813
5 2.7342 2.7335 2.2833 2.2820
6 2.9000 2.9006 2.4500 2.4490
7 3.0440 3.0437 2.5929 2.5921
8 3.1686 3.1689 2.7179 2.7173
9 3.2803 3.2801 2.8290 2.8285

The ‘Schroedinger’ representation can be used in different ways. In particular, we can
exploit this representation to compute the semiclassical approximation to the eigenvalues
and eigenfunctions. We note that near the turning points, where the kinetic term is small
we can apply the standard WKB approach. This leads to the following (Bohr–Sommerfeld)
semiclassical approximation to the eigenvalues:∫ b

a

G−1(κ ′ − V ) du = π(n + 1/2) (17)

where G−1 is the inverse function of G and a, b are the turning points. It follows from
equation (16) that the inverse function is approximately G−1(ξ) = exp(ξ/2)+O(exp(−ξ/2)).

In the region where the semiclassical approximation works we can neglect all asymptotic
terms besides the first one. In the main approximation we can also put a = −∞, b = +∞.

Then equation (17) can be rewritten as∫ +∞

−∞
exp

(
1
2 (κ ′ − V )

)
du = π(n + 1/2). (18)

This integral can be easily calculated and we derive for the spectrum of the operator Kαβ :

κ(α,β)
n ≈ 2

[
log(π(n + 1/2)) − log(B(α/2, β/2)) +

(
1 − 1

2 (α + β)
)

log 2 + γE

]
,

where B is Euler’s ‘beta’ function, i.e. we arrive at equation (1). This equation gives the
standard approximation for the harmonic numbers hn (the eigenvalues of 1

2K1 1) up to O(1/n2),
while for the eigenvalues of Tuck’s operator T = 1

2K22 it gives

1
2κ(2,2)

n ≈ log(π(n + 1/2)) − log 2 + γE. (19)

The semiclassical formulae are contrasted with the numerical or exact eigenvalues in table 1
for operators T and H respectively.

The semiclassical eigenfunctions �(sc)(u) can be written in the form

�(sc)
n (u) = A sin

(∫ u

−∞
exp

{
1
2 (κ ′

n − V )
}

du + π/4

)
exp(−V (u)/4)

where A is a normalization factor and κ ′
n = κn − 2γE. The integral gives the incomplete beta

function which reduces to elementary transcendentals in the special cases α = β = 1 and
α = β = 2 corresponding to the operators H and T respectively. In the first case we have

�(sc)
n (u) = A1

sin[(2n + 1) tan−1(eu) + π/4]√
cosh u

(20)
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Figure 1. An example of semiclassical wavefunction (equation (22)) for the T operator, n = 15.

with A1 = (
1
2π + 1

2n+1

)−1/2
. In the case corresponding to Tuck’s operator T we obtain

�(sc)
n (u) = A2

sin[π/2(n + 1/2)(tanh u + 1) + π/4]

cosh u
(21)

with A2 = (
1 + 2/π

2n+1

)−1/2
. If we rewrite these functions in terms of original variables

x = tanh u and functions φ(x) = cosh(u)�(u) then expression (20) gives the well-known
large n asymptotics of Legendre polynomials:

φn(cos θ) ∼ sin[(n + 1/2)θ + π/4]√
sin θ

.

For Tuck’s case (α = β = 2), the semiclassical wavefunctions have a very simple form

φn(x) = A sin[π/2(n + 1/2)(x + 1) + π/4] (22)

and they give a rather accurate description (figure 1) of the true eigenfunctions which can be
easily computed numerically (i.e. by using the spectral representation for the operator H on
the Legendre basis).

4.2. Boundary behaviour

The ‘Schroedinger’ representation (15) can be used to derive the asymptotic behaviour of the
eigenfunctions φ(x) at the singular points x → ±1. Namely we show that these asymptotics
have the form

φαβ ∼ |log(1 + x)|dα |log(1 − x)|dβ (23)

where

dα = 1

α
− 1; dβ = 1

β
− 1. (24)
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We note that the asymptotic behaviour of the function φ(x) at x → ±1 can be derived from
the asymptotics of the function �(u) at u → ±∞. Consider, for example, this asymptotics at
u → +∞ (x → 1). In this limit the potential term V has the form

V = 2βu − 2α log 2 + O(e−2u).

We can neglect all terms in this expansion besides the linear one. In this way the problem
is reduced to the calculation of the asymptotics at u → ∞ of the solution of equation (15)
with a linear potential. For this purpose it is convenient to rewrite this equation in the Fourier
representation. It follows from the explicit form of function G(p) that the Fourier transform
�̃(p) of �(u) satisfies the first-order differential equation:

−2βi∂p�̃(p) + [ψ(1/2 + ip/2) + ψ(1/2 − ip/2) + log 4]�̃(p) = κ ′�̃(p).

The solution of this equation has the form

�̃(p) =
(

2−ip �
(

1
2 (1 − ip)

)
�

(
1
2 (1 + ip)

) )1/β

exp(iκ ′p/2β). (25)

The asymptotics of the function

�(u) =
∫

exp(−ipu)�̃(p) dp (26)

is determined by the nearest singularity of the function �̃(p) in the lower half plane at the point
p = −i. For non-integer 1/β this singularity is a branching point. The standard estimation of
the corresponding contribution gives

�(u) → udβ e−u(1 + O(1/u)); u → ∞.

Taking into account that x = tanh u and φ(x) = cosh(u)�(u) as well as the α, β symmetry
of the equation we arrive at equations (23), (24). It follows from equation (25) that this
asymptotics takes place in a rather narrow region u 	 κ ′/2β or |log(1 − x)| 	 κ ′/β
(for x → 1).

We note that for β = 1 the integral (26) can be calculated explicitly and we can derive
the exact wavefunctions in the potential V = 2u. They have the form

�(u) = yJ0(2y)

where y = exp(−u + κ ′/2) and J0(z) is the Bessel function.
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Appendix A. The connection to hyperbolic plane

The eigenfunctions φ(k, x) given by equation (6) are related to Legendre functions with
complex index. To see this, let us revert to the original form of the MM equation for which
the eigenfunctions are given by

u(k, x) = x1/2+ikF
(

1
2 + ik, 1

2 + ik, 1, 1 − x
)
.

By using well-known properties of Jacobi functions (see [5]) we find that u(k, x) can be
identified with the Jacobi function φ

(0,0)
2k (t) with x = 1/ cosh2(t). Hence it follows that

u(k, x) = P−1/2+ik(2/x−1). Now, it is well known that Legendre functions of this kind appear
as spherical functions on the hyperbolic plane7, i.e. they are eigenfunctions of the radial part
of the Laplace operator in the case of the two-dimensional homogeneous Riemannian space
with constant negative curvature. In Gaussian coordinates, ds2 = dr2 + sinh2 r dϕ2, the radial
part of the Laplacian �r is given by

�r = (d/dr)2 + coth r d/dr.

and we can immediately check that (�r + (1/4 + k2))P−1/2+ik(cosh r) = 0. It is then natural
to conclude that there must exist a map x → r and a suitable similarity transformation which
connects the operatorL of section 3 to �r . From the expression of u(k, x) in terms of Legendre
functions, the map is given by cosh r = 2/x −1 = 4/(z+ 1)−1, where z is the variable which
enters the definition of L. The similarity transformation is simply

1
2L ≡ (1 + cosh r)�r(1 + cosh r)−1.

Having established this connection, the explicit eigenfunction expansion comes for free
in terms of Mehler–Fock transform{

u(x) = ∫ ∞
0 P−1/2+ik

(
2
x

− 1
)
c(k) dk, (0 < x < 1)

c(k) = k tanh πk
∫ ∞

1 u
(

2
1+t

)
P−1/2+ik(t) dt

which can be used to solve the evolution in τ for the MM equation [2].

Appendix B

We give a simple proof of an old result due to Tuck [3].

Theorem. 1
2K1 1 has the Legendre polynomials Pn(x) as eigenvectors with eigenvalues the

harmonic sums hn.

Proof. By computing K1 1pn with pn(x) ≡ xn we find

(K1 1pn)(x) =
∫ 1

−1
dy

xn − yn

|x − y|

=
(∫ x

−1
−

∫ 1

x

)
dy

n∑
k=1

yk−1xn−k

= 2hnx
n −

n∑
k=1

1 + (−1)k

k
xn−k,

hence K1 1 leaves each subspace Pn of polynomials of degree n invariant for any n. Its matrix
representation is upper triangular and its eigenvalues are found on the diagonal by inspection.

7 See e.g. [7, 8].
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Since K1 1 is symmetric with respect to the inner product 〈p1, p2〉 = ∫ 1
−1 dx p1(x)p2(x), its

eigenvectors are orthogonal, and hence they are the Legendre polynomials. �
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